Differential Timing and Control of Noncrossover and Crossover Recombination during Meiosis
نویسندگان
چکیده
Unitary models of meiotic recombination postulate that a central intermediate containing Holliday junctions is resolved to generate either noncrossover or crossover recombinants, both of which contain heteroduplex DNA. Contrary to this expectation, we find that during meiosis in Saccharomyces cerevisiae, noncrossover heteroduplex products are formed at the same time as Holliday junction intermediates. Crossovers appear later, when these intermediates are resolved. Furthermore, noncrossover and crossover recombination are regulated differently. ndt80 mutants arrest in meiosis with unresolved Holliday junction intermediates and very few crossovers, while noncrossover heteroduplex products are formed at normal levels and with normal timing. These results suggest that crossovers are formed by resolution of Holliday junction intermediates, while most noncrossover recombinants arise by a different, earlier pathway.
منابع مشابه
Crossover Homeostasis in Yeast Meiosis
Crossovers produced by homologous recombination promote accurate chromosome segregation in meiosis and are controlled such that at least one forms per chromosome pair and multiple crossovers are widely spaced. Recombination initiates with an excess number of double-strand breaks made by Spo11 protein. Thus, crossover control involves a decision by which some breaks give crossovers while others ...
متن کاملRegulatory Control of the Resolution of DNA Recombination Intermediates during Meiosis and Mitosis
The efficient and timely resolution of DNA recombination intermediates is essential for bipolar chromosome segregation. Here, we show that the specialized chromosome segregation patterns of meiosis and mitosis, which require the coordination of recombination with cell-cycle progression, are achieved by regulating the timing of activation of two crossover-promoting endonucleases. In yeast meiosi...
متن کاملCrossover/Noncrossover Differentiation, Synaptonemal Complex Formation, and Regulatory Surveillance at the Leptotene/Zygotene Transition of Meiosis
Yeast mutants lacking meiotic proteins Zip1, Zip2, Zip3, Mer3, and/or Msh5 (ZMMs) were analyzed for recombination, synaptonemal complex (SC), and meiotic progression. At 33 degrees C, recombination-initiating double-strand breaks (DSBs) and noncrossover products (NCRs) form normally while formation of single-end invasion strand exchange intermediates (SEIs), double Holliday junctions, crossover...
متن کاملmlh3 mutations in baker’s yeast alter meiotic recombination outcomes by increasing noncrossover events genome-wide
Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker's yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing...
متن کاملCrossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway.
Two RecA-like recombinases, Rad51 and Dmc1, function together during double-strand break (DSB)-mediated meiotic recombination to promote homologous strand invasion in the budding yeast Saccharomyces cerevisiae. Two partially redundant proteins, Rad54 and Tid1/Rdh54, act as recombinase accessory factors. Here, tetrad analysis shows that mutants lacking Tid1 form four-viable-spore tetrads with le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 106 شماره
صفحات -
تاریخ انتشار 2001